
www.manaraa.com

Securing Distributed Data Storage and Retrieval in Sensor
Networks∗

Nalin Subramanian, Chanjun Yang, and Wensheng Zhang
Department of Computer Science

Iowa State University, Ames, IA 50011
Email:{nvsubram, cjyang, wzhang}@cs.iastate.edu

Abstract

Sensor networks have been an attractive platform for
pervasive computing and communication. Due to the lack
of physical protection, however, sensor networks are vulner-
able to attacks if deployed in hostile environments. When a
sensor network is under attack, the most fundamental con-
cern is that information communicated or stored in the net-
work remains safe. The past research has focused on se-
curing information in communication, but how to secure in-
formation in storage has been generally overlooked. Mean-
while, distributed data storage and retrieval have become
popular for efficient data management in sensor networks,
which renders the absence of schemes for securing stored
information to be a more severe problem. Hence, we pro-
pose in this paper three schemes to deal with the prob-
lem. All the schemes have the following properties: (i)
Only authorized entities can access data stored in the sen-
sor network; (ii) The schemes are resilient to a large num-
ber of sensor node compromises. The second and the third
schemes do not involve any centralized entity except for a
few initialization or renewal operations, and thus support
secure, distributed data storage and retrieval. The third
scheme further provides high scalability and flexibility, and
hence is most suitable in real applications. The effective-
ness and efficiency of the proposed schemes have also been
verified through extensive analysis and TOSSIM-based sim-
ulations.

1. Introduction

The sensor network [1, 2] is a collection of small-size,
low-power, low-cost sensor nodes that have some computa-
tion, communication, storage and even movement capabil-
ities. These nodes can operate unattended, sensing the en-
vironment, generating data, processing data, and providing
the data to users. With these features, sensor networks have

∗This work was partially supported by NSF CYBERTRUST-0627354.

been adopted in many pervasive computation and commu-
nication scenarios such as remote surveillance, habitat mon-
itoring, and so on [3, 4]. Along with the attractive features
and the increasingly important roles in applications, the sen-
sor network however has its own limitations such as lack
of physical protection, which is caused by its unattended
deployment environment and absence of tamper resistance.
Without physical protection, the sensor network may suffer
from node compromise-based attacks, besides the attacks
(e.g., eavesdropping, jamming, etc.) that can happen in any
type of wireless networks. For instance, attackers invading
the deployment field of a sensor network can capture and
compromise sensor nodes, and then steal the information
stored in the nodes.

The past research on sensor network security has fo-
cused on securing the information in communication; in
particular, a large number of key establishment [5, 6, 7],
message authentication [8, 9] and intrusion detection [10]
schemes have been proposed for the purpose. However,
securing information in storage has not received adequate
attention from the research community. Meanwhile, more
and more distributed in-network data storage and retrieval
schemes [3, 11, 12, 13, 14, 15, 16, 17, 18] have been pro-
posed for efficient data management, which makes the ab-
sence of mechanisms for securing stored information to be
a more severe issue. In the distributed in-network data stor-
age schemes such as TTDD [3], DCS [11, 13], TSRA [17],
the landmark-based information brokerage system [18], and
others [12, 14, 15, 16], after a sensor node has generated
some data, the node stores the data locally or at some des-
ignated nodes in the network, instead of immediately for-
warding the data to a centralized data center, which is usu-
ally located out of the network; the locally stored data are
sent out from the in-network storages only when they are
queried. To protect the stored data from being stolen by the
attackers who have compromised storage nodes, the data
should be encrypted. At the same time, users authorized
to access the data should be able to decrypt the data. This
raises the issue of how to simultaneously achieve data se-
curity and data accessibility in distributed data storage and

www.manaraa.com

retrieval systems.
If every data query goes through a trustworthy central-

ized entity, the above issue can be addressed based on the
following idea: the locally stored data are encrypted with
some encryption keys that will not be exposed to unautho-
rized users; the centralized entity keeps track of the encryp-
tion keys, and perform data decryption to facilitate autho-
rized users in accessing the data. However, the frequent
involvement of a centralized entity may compromise the ef-
ficiency and effectiveness of the system. For example, let
us assume a sensor network is deployed to monitor a bat-
tlefield [3]. The authorized users of the sensor data (e.g.,
soldiers) may move in the field and issue queries from any
location in the field. If every query must go through a cen-
tralized entity, data access delay could be significantly in-
creased. Besides, the query or data response could be lost
due to link failures, traffic congestion, or other reasons. The
loss of data and the data access delay may impair the vision
of the soldiers, which could be life-threatening in some crit-
ical scenarios. Even worse, maintaining a centralized entity
in the hostile environment could be infeasible since the cen-
tralized entity would become an attractive target for attacks.

To minimize the involvement of any centralized entity in
data retrieval, decentralizing data retrieval is desired, and
this has in fact been realized in a number of distributed in-
network data storage systems [3, 11, 12, 18] which provide
some information brokerage mechanisms to bridge data
producers and consumers. The introduction of distributed
retrieval, however, has made the problem of securing dis-
tributed data storage to be more challenging. To support
both distributed data storage and distributed data retrieval,
the following requirements should be met simultaneously:
(i) only authorized entities can access data stored in the net-
work; (ii) the storage and retrieval operations should involve
any centralized entity at least as possible; (iii) the scheme
should be resilient to the compromises of a large number of
sensor nodes.

In this paper, we propose a series of schemes for se-
curing both distributed data storage and distributed data
retrieval. We first propose a Simple Hash-Based (SHB)
scheme, which supports distributed data storage but relies
on a centralized entity for data retrieval. To further en-
able and secure distributed data retrieval, we propose an
Enhanced Hash-Based (EHB) scheme, in which secret key-
ing information is preloaded to sensor nodes and authorized
users, and then they can perform distributed data storage
and retrieval without the involvement of any centralized en-
tity. However, the EHB scheme imposes strict restrictions
on the network and is not scalable since the network life
time should be determined before node deployment and be
fixed after that; the overhead for storing preloaded infor-
mation is linear to the system life time. To remove the
restrictions and improve scalability, we finally propose an
Adaptive Polynomial-Based (APB) scheme, which allows a
network controller to refresh the keying information stored
in sensor nodes on demand, and thus provide better scala-

bility and flexibility; meanwhile, the network controller is
only involved occasionally, and thus does not noticeably af-
fect the system efficiency. The security properties and the
efficiency of the proposed schemes are evaluated through
extensive analysis and TOSSIM-based simulations.

The rest of the paper is organized as follows: Section II
presents the network assumptions and attack model. Sec-
tion III presents the proposed schemes. This is followed by
the security analysis and performance evaluation in Section
IV and V, respectively. Section VI finally concludes the pa-
per.

2 Preliminaries

2.1. Network assumptions

We consider a sensor network that is composed of a net-
work controller, which could be online or offline, and a
large number of sensor nodes, each has a unique ID. Follow-
ing the previous works (e.g., TTDD [3], DCS [11], GEM
[13], TSRA [17], etc.) on in-network distributed storage,
we assume each sensor node has some capacity to store
sensor data. Once these sensor nodes have generated some
data, the data are stored locally or at some designated stor-
age sensor nodes. The stored data can be retrieved by au-
thorized users, e.g., soldiers in a battlefield, tourists in a
national park, or zoologists in the wilder. To simplify the
presentation of our schemes, we assume that sensor data
are retrieved based on time (The schemes can be extended
to support more complicated modes of data retrieval).

We also assume the sensor nodes maintain loose time
synchronization, which is in fact a prerequisite for many
applications. Based on time synchronization, the lifetime
of the network is divided into phases, each having the same
time duration denoted as τ . Therefore, Phase 0 spans from
time 0 to time τ , Phase 1 spans from time τ to time 2τ , and
so forth.

2.2. Attack model and Design Goal

The distributed in-network data storage system could be
attacked in many ways. In this paper, we focus on the at-
tack that unauthorized users attempts to steal data stored in
the network. Concretely, the attack can be conducted as fol-
lows: the attacker first compromises some sensor nodes; it
then captures the data stored in the sensor nodes; if the data
are encrypted, it will attempt to figure out the key and thus
decrypt the data.

Due to the lack of physical protection for sensor nodes,
the compromise of sensor nodes and the capturing of data
from the compromised sensor nodes cannot be fully pre-
vented. The moderate objective of our design is to prevent
the attacker from interpreting the data they have captured,
through appropriate strategy of data encryption; meanwhile,
our design aims to not noticeably affect the efficiency for
authorized users to retrieve and interpret the data.

www.manaraa.com

3. Proposed Schemes

In this section, we propose a series of schemes for secur-
ing distributed data storage and retrieval.

3.1. Simple Hash-Based (SHB) Scheme

The SHB scheme has three components, initialization,
data storage (encryption), and data retrieval (decryption),
which are detailed as follows:

(1) System Initialization

Initially, the network controller picks a secure hash
function, denoted as h(.) and a master key denoted as
Km. Before deploying a sensor node whose ID is u
(We call the node u thereafter), the network controller
preloads to the node hash functions h(.), and an ini-
tial data encryption key Ku,0, which is computed as
h(Km | u). Here, | stands for the concatenation oper-
ator. After being deployed, sensor node u establishes
a sensor data item counter c, and initializes it to 0.

(2) Data Storage

When node u generates a data item (denoted as D), it
performs the following steps:

(i) The data item is encrypted with the current en-
cryption key Ku,c. Then, the encrypted version is
stored with the current value of c and the current
time stamp t. That is, a 3-tuple 〈{D}Ku,c , c, t〉
is stored, where {D}Ku,c represents the result of
encrypting data item D with key Ku,c.

(ii) The counter c and the data encryption key are up-
dated. That is, c ← c + 1, and the current data
encryption key becomes Ku,c = h(Ku,c−1).

(iii) The previous data encryption key Ku,c−1 is
erased.

(3) Data Retrieval

When a user authorized to query sensor data generated
during certain time period, the user sends out query.
For any response data sent by any sensor node u, de-
noted as 〈{D}Ku,c , c, t〉, the user has to resort to the
network controller, which keeps master key Km and
can compute Ku,c as hc(Km | u), to decrypt {D}Ku,c

and thus obtain the data item D.

Discussion The SHB scheme requires the network con-
troller to be tightly involved in every data query for data
decryption. The interaction may incur high communication
overhead especially when the user is far away from the con-
troller. The controller could become a communication bot-
tleneck if there exist many users. These limitations motivate
us to design new schemes that can secure both distributed
data storage and distributed data retrieval.

3.2. Enhanced Hash-Based (EHB) Scheme

Assume the network lifetime has n phases. The EHB
scheme is detailed as follows:

(1) System Initialization

Similar to SHB, the network controller picks a secure
hash function, denoted as h(.) and a master key de-
noted as Km. Before deploying every sensor node u,
the network controller preloads to the node hash func-
tions h(.), and n initial data encryption keys Ku,i,0

(i = 0, · · · , n− 1) for each phase. Each Ku,i,0 is com-
puted as h(h(Km | i) | u).

(2) Per-phase Initialization

At the beginning of Phase i (i = 0, · · · , n− 1), sensor
node u establishes a sensor data item counter ci, and
initializes it to 0. Node u also initializes the current
data encryption key to be Ku,i,0.

(3) Data Storage

When node u generates a data item (denoted as D), it
performs the following steps:

(i) The data item is encrypted with the current en-
cryption key Ku,i,ci . Then, the encrypted version
is stored with the current phase number i, the cur-
rent value of ci, and the current time t. That is, a
4-tuple 〈{D}Ku,i,ci

, i, ci, t〉 is stored.

(ii) The counter ci and the data encryption key are
updated. That is, ci ← ci+1, and the current data
encryption key becomes Ku,i,ci = h(Ku,i,ci−1),
which is equal to hci(Ku,i,0).

(iii) The previous data encryption key Ku,i,ci−1 is
erased.

(4) Data Retrieval

When a user authorized to query sensor data generated
during certain time period (i.e., from Phase is to Phase
ie), the user is preloaded with the following initial keys
of phases: {PKi = h(Km | i) | i = is, · · · , ie}.
After the user sends out queries, it will obtain re-
sponses from sensor nodes. For each response
〈{D}Ku,i,ci

, i, ci, t〉 (is ≤ i ≤ ie) sent from sen-
sor node u, the user can recover the data encryp-
tion key Ku,i,ci by computing hci(h(PKi) | u)) ≡
hci(h(Km | i) | u)). Then the data item D can be
decrypted with key Ku,i,ci .

Discussion Comparing to the SHB scheme, the EHB
scheme supports both distributed data storage and dis-
tributed data retrieval. The network controller is involved
only for some initialization operations. However, the EHB
scheme has such limitations as the number of phases is fixed
and the initial data encryption keys for all these phases

www.manaraa.com

should be preloaded before sensor nodes are deployed.
These limitations impede the scalability of the network in
terms of network life time and storage consumption.

A straightforward way to further extend the EPB scheme
is as follows: Each sensor node is preloaded with only the
initial data encryption keys for a certain number of phases,
and the network controller will disseminate new keys be-
fore the existing keys have been used up. This way, the net-
work life time will not be constrained by the number of keys
preloaded to each sensor node, and the sensor node does not
need to allocate a large storage space for storing the keys in
order to support long life time. However, this will require
the network controller to disseminate securely new keys to
individual sensor nodes. Since each sensor node needs dif-
ferent sets of keys, the overhead for the dissemination is
proportional to the number of sensor nodes, the number of
keys each node must receive, and the frequency of new key
dissemination. Therefore, the solution may not be feasible
when the network scale is large, and/or the length of phase
is short (and hence the frequency of new key dissemination
or the number of keys each node must receive will be large).

3.3. Adaptive Polynomial-Based (APB)
Scheme

To deal with the limitation of non-scalability in the EHB
scheme, we now propose a novel APB scheme. In this
scheme, the network controller can disseminate on-demand
a single copy of network-wide seed polynomial to all sensor
nodes; then, each sensor node can refresh their data encryp-
tion keys based on the received polynomial. This way, the
system life time and the storage overhead at each sensor
node can be dynamically adjusted. Note that, this approach
is significantly more efficient than disseminating different
sets of keys to different sensor nodes (as discussed above
on extending EHB).

In the following, we will first present the algorithm for
disseminating the network-wide seed polynomial, then the
algorithm for individual sensor nodes to derive their data
encryption keys and encryption data, and the algorithm for
individual users to retrieve and decrypt data they are autho-
rized to access. Finally, an enhancement for further improv-
ing the efficiency of seed polynomial dissemination will be
described.

3.3.1 Dissemination of Network-wide Seed Polynomial

To enable dissemination of network-wide seed polynomi-
als, the following system preparation should be performed
before sensor nodes are deployed: The network controller
arbitrarily constructs a three variable polynomial p(x, y, z)
called perturbing polynomial1 over a finite field Fq , where
q is primary number. We further define two integers l and

1This polynomial is used for prevent eavesdropping of the seed poly-
nomial broadcast in the network.

r, where l is the smallest integer such that 2l > q (i.e., ev-
ery element of the finite field Fq can be represented with l
binary bits), and r is some integer smaller than l. Before
each sensor node u is deployed, the node is preloaded with
a perturbed share of p(x, y, z), i.e.,

p̃u(y, z) = p(u, y, z)− αu,

where αu is an element of Fq randomly picked from
{0, · · · , 2r−2 − 1}.

When the Node is deployed, Node u derives m (m is a
system parameter) perturbed shares of p(u, y, z):

pu(y, 0) = p̃u(y, 0)− r0

pu(y, 1) = p̃u(y, 1)− r1

...

pu(y, m− 1) = p̃u(y, m− 1)− rm−1

where r0, r1, · · · , rm−1 are elements of Fq randomly picked
from {0, · · · , 2r−2−1}. After the node derives m perturbed
shares, p̃u(y, z) is immediately removed.

Now, suppose the network controller wants to dissemi-
nate a network-wide seed polynomial for producing keys for
Phases is, · · · , ie. The following steps will be performed:

(i) The network controller arbitrarily picks a bivariate
polynomial f(x, y), called master polynomial, which
provides the basis for generating data decryption keys
for Phases is, · · · , ie.

(ii) Based on the master polynomial f(x, y) and the per-
turbing polynomial p(x, y, v) (where the network con-
troller is disseminating network-wide seed polynomial
for the (v + 1)th time, for v ∈ {0, · · · , m − 1}), the
network controller constructs the network-wide seed
polynomial w(x, y); specifically,

w(x, y) = f(x, y) + p(x, y, v) + µv,

where µv is an element of Fq randomly picked from
{0, · · · , 2r−1 − 1}.

(iii) The network controller broadcasts polynomial w(x, y)
to all sensor nodes

(iv) Upon receiving w(x, y), every sensor node u derives
its own seed polynomial

fu(y) = w(u, y)− pu(y, v)

Note that, fu(y) (i.e., the seed polynomial of node u)
and f(x, y) (i.e., the network-wide seed polynomial)
has the following relationship:

fu(y)− f(u, y) ∈ {0, · · · , 2r − 1}. (1)

www.manaraa.com

Network controller

Sensor Node 1

Deriving,

4

= 232y + 160

Sensor Node 0 Sensor Node n....

....

Difference is 11 (< 2)

1p (y,0) = 17y + 14

p (x,y,z) = 12xyz+16xy+4xz+9yz+
 +10x+y+5z+8

= 158xy + 70x + 91y + 115Broadcast w (x,y)

= 232y + 171
1

f (y) = w (1,y) −p (y,0)1

f (x,y)=142xy + 60x + 90y + 100

 f (1,y)

Figure 1. An Example of Disseminating A New Seed Polynomial (r = 4, z = 0)

This is because

fu(y) = w(u, y)− pu(y, v)
= (f(u, y) + p(u, y, v) + µv)
−(p(u, y, v)− αu − rv)

= f(u, y) + (µv + αu + rv),

and
(µv + αu + rv) ∈ {0, · · · , 2r − 1}.

Fig. 1 shows an example to illustrate the above proce-
dure. Let system parameters be r = 4, new master poly-
nomial is f(x, y) = 142xy + 60x + 90y + 100, perturbing
polynomial is p(x, y, z) = 24xyz + 16xy + 4xz + 9yz +
10x + y + 5z + 8. Suppose the network controller is dis-
seminating seed for the 1st time, then z = 0. Suppose
the arbitrarily chosen random numbers be (α1 + r1) = 7
and µ0 = 4 (∈ {0, · · · , 24−1 − 1}) used for p1(y, 1) and
w(x, y). Based on disseminated polynomial, node 1 derives
f1(y) = 232y + 171, which differs f(1, y) = 232y + 160
by 11 (within {0, · · · , 24 − 1}).

After the extraction of master seed polynomial, the node
u removes pu(y, v). Each time a node receives the network-
wide seed polynomial, the node uses the current perturb-
ing polynomial share to extract the master polynomial, fol-
lowed by deleting the current perturbing share (pu(y, v)).
And for any of the future network-wide seed polynomial
update from network controller, the node uses the next de-
rived perturbing polynomial share (pu(y, v + 1)). This way
the adversary who can eavesdrop w(x, y), will not be able
to derive the currently disseminated master seed polyno-
mial by capturing the nodes at later duration. This is be-
cause, once the node u deletes the currently used perturbing
polynomial share pu(y, v) of p̃u(y, z), it will be hard for
the adversary to calculate the perturbing polynomial share
at the time the adversary attacks. Since the node has only
{pu(y, v +1), · · · , pu(y, m− 1)}, it will become harder for
the adversary to obtain the original share p̃u(y, z).

As to be explained in Section 3.3.2, sensor node u will
derive its initial keys for Phases is, · · · , ie from fu(y). Also,
as to be shown in Section 4, with the above procedure for
disseminating seed polynomial, any sensor node u has very
low probability to derive the seed polynomial of any other
sensor node, if system parameter r as well as t the degree
of x and y in polynomial f(x, y) are appropriately chosen.

Note that, initially preloaded perturbing polynomial
p̃u(y, z) can be used only for m times dissemination of
network-wide seed polynomial. As a system parameter, m
is set when the perturbing polynomial is preloaded; mean-
while, whenever a network-wide seed polynomial is dis-
seminated, the number of phases for which the seed poly-
nomial is to be used is announced online, which provides
the flexibility to accommodate adjustable network lifetime.
More flexibility can be achieved if new perturbing polyno-
mials can be disseminated after the old one is used up, and
this will be studied in our future work.

Also note that, we do not describe the distribution of
keys for the beginning phases (i.e., Phase 0, 1, · · ·). These
keys can be directly preloaded from the network controller
to sensor nodes before they are deployed.

3.3.2 Securing Data Storage

After obtaining fu(y) and before Phase is starts, sensor
node u must derive the initial data encryption keys for
Phases is, · · · , ie. Following the notations used in Section
3.2, the initial key for Phase i, denoted as Ku,i,0 is com-
puted as the most significant l−r bits of fu(i). Then, fu(y)
is erased immediately.

Having derived the initial keys Ku,i,0 (i = is, · · · , ie),
the procedures for constructing data encryption keys and
securing data storage is the same as Steps (2) and (3) of
the EHB scheme (in Section 3.2), except that sensor node u
generates and stores h(Ku,i,0) before Ku,i,0 is erased.

Following the example shown in Figure 1, Figure 2 il-
lustrates the data storage procedure by showing how node 1

www.manaraa.com

derives the keys for data encryption. After node 1 has de-
rived f1(y), it further derives initials keys for phases, i.e.,
(01010) for Phase 0, (11001) for Phase 1, and so forth.
Then, during Phase 1, the first data item (with number 0)
is encrypted with key (11001), the second item (with num-
ber 1) is encrypted with key h(11001), and so forth.

3.3.3 Securing Data Retrieval

Let us consider a user who is authorized to query sensor
data generated during Phase i (i ∈ {is, · · · , ie}). The
procedure for the user to generate data decryption keys
includes the following steps:

Data Decryption Polynomial Preloading

Before the user can access the sensor data he is autho-
rized to, he is preloaded with a secret data decryption poly-
nomial, denoted as fi(x), by the network controller. Here,
fi(x) is derived from the master polynomial f(x, y); specif-
ically,

fi(x) = f(x, i) + βi, (2)

where βi is an element of Fq randomly picked from
{0, · · · , 2r − 1}.

Data Retrieval and Decryption

Suppose the user has sent out his query and has received
data response from sensor node u. The received data cannot
be accessed immediately since they are encrypted. Specifi-
cally, each response data item has the following format

〈{D}Ku,i,j , i, j, t)〉,

and node u also sends h(Ku,i,0) to the user to facilitate him
in deriving key Ku,i,j .

To figure out Ku,i,j and thus decrypt the data item, the
user first evaluates the preloaded decryption polynomial
fi(x) at x = u and obtains fi(u). From fi(u), the user fur-
ther computes fi(u) − 2r and fi(u) + 2r. Since the above
three numbers are all elements of Fq , each of them can be
represented as l binary bits. Let us represent the most sig-
nificant l − r bits of fi(u), fi(u) − 2r, and fi(u) + 2r as
γ, γ− and γ+, respectively. Then, we have the following
theorem:

Theorem 1 Ku,i,0 must be the same as one of γ, γ−, or
γ+.

Proof. By comparing Eq. (1) and Eq. (2), we can see
that both fu(i) and fi(u) are derived from f(u, i); their
differences are determined by the added random numbers
(µv +αu + rv) and βi. Recall that both (µv +αu + rv) and
βi are in {0, · · · , 2r − 1}, and Ku,i,0 is the most significant
l− r bits of fu(i). So, there are following four cases:

• Case 1: Neither f(u, i)+(µv +αu+rv) or f(u, i)+βi

generates a carry from the least significant r bits to
the most significant l − r bits. In this case, the most
significant l− r bits of f(u, i), fu(i) and fi(u) are the
same. Thus, Ku,i,0 = γ.

• Case 2: f(u, i)+(µv+αu+rv) generates a carry from
the least significant r bits to the most significant l − r
bits, but f(u, i) + βi does not. In this case, the most
significant l− r bits of f(u, i)+ (µv + αu + rv) is the
same as those of f(u, i)+βi +2r. Thus, Ku,i,0 = γ+.

• Case 3: f(u, i) + (µv + αu + rv) does not generate a
carry from the least significant r bits to the most sig-
nificant l−r bits, but f(u, i)+βi does. In this case, the
most significant l− r bits of f(u, i) + (µv + αu + rv)
is the same as those of f(u, i) + βi − 2r. Thus,
Ku,i,0 = γ−.

• Case 4: Both f(u, i) + (µv + αu + rv) and f(u, i) +
βi generate a carry from the least significant r bits to
the most significant l − r bits. In this case, the most
significant l− r bits of f(u, i), fu(i) and fi(u) are the
same. Thus, Ku,i,0 = γ.

According to the above theorem, the initial data encryp-
tion key of Phase i used by sensor node u, i.e., Ku,i,0 must
be the same as one of γ, γ− or γ+. Then, Ku,i,0 can be
found based on the following

h(Ku,i,0) = h(γ)⇒ Ku,i,0 = γ

h(Ku,i,0) = h(γ−)⇒ Ku,i,0 = γ−

h(Ku,i,0) = h(γ+)⇒ Ku,i,0 = γ+

Once Ku,i,0 is found, the key Ku,i,j can be computed by
hj(Ku,i,0); hence, the data {D}Ku,i,j can be decrypted.

Fig. 2 illustrates the above procedure of recovering the
key to decrypt data.

3.3.4 Reducing Bandwidth Consumption

Every time when the data encryption keys should be re-
freshed, the network controller broadcasts w(x, y) to all
sensor nodes. Let t be the degree of x and y in w(x, y).
Then, (t + 1)2 coefficients should be broadcast. It may
still involve high communication overhead if t is large.
Slight variation in the degree of polynomial greatly affects
the amount of energy utilized to disseminate the perturbed
shares. To reduce the communication overhead while not
compromising the security properties of the scheme, we
propose an optimization, in which the network controller
broadcasts only (t + 1) coefficients instead of all (t + 1)2
coefficients. Using a relation defined below among coef-
ficients, other coefficients can be reconstructed from the
broadcasts (t + 1) coefficients. This optimization scheme
reduces the requirement for broadcast bandwidth, still re-
taining the same features provided by the base scheme.

www.manaraa.com

Network Controller

Key generation for data encryption

y=0

y=1

....

....

....

 0 1 0 1 0 1 0 1 1

 1 1 0 0 1 0 0 1 1

query:get data response
from node 1

+2 4

 4−2

...

...

...

...

...

...

Key generation for data decryption

Key agreement achieved

 i

f (x,y) = 142xy + 60x + 90y + 100

User for period y=1,

1

 1f (1) = 403

f (y) = 232y + 171
Sensor Node 1 preloaded with

 1

1f (x) =202x + 195

 1 1 0 0 1 1 1 0 1

key = left most (l−r) bits = left 5 MSB

 1 1 0 0 1

h(1 1 0 0 1)

h (1 1 0 0 1)

 1 0 1 1 1 1 1 0 1

 1 1 0 0 0 1 1 0 1

f (1) = 397

Figure 2. An Example of Generating Data Encryption Key at the sensor Node and Recovering the Key at the Receiver (r = 4)

Let

w(x, y) =
∑

0≤i,j≤t

Ai,jx
iyj .

In addition, let the relation among the coefficients Ai,j be

Aj,i = hj(A0,i), j = 0, · · · , t; i = 0, · · · , t.

and each A0,i is an integer randomly picked from finite field
Fq . The above defined relation among coefficients is known
to all sensor nodes.

When the network controller needs to broadcast w(x, y),
it randomly generates only (t + 1) coefficients A0,0, A0,1,
· · ·, A0,t), and broadcasts these coefficients to all sensor
nodes. Based on the relation defined above, both network
controller and sensor nodes can obtain the complete set of
coefficients Ai,j (0 ≤ i, j ≤ t). From the randomly con-
structed w(x, y), f(x, y) can be derived as follows:

f(x, y) = w(x, y) − p(x, y, v)− µv,

where p(x, y, v) is defined earlier for the (v+1)th dissemi-
nation (for v ∈ {0, · · · , m−1}), and µv is randomly picked
from {0, · · · , 2r−1 − 1}.

This optimization scheme for broadcast reduces 1/(t +
1)-th times the energy consumed for per transmission of
new seed polynomials. For t = 15, all the 256 (i.e., (15 +
1) ∗ (15 + 1)) coefficients of w(x, y) has to be broadcast
to all sensor nodes per update in original scheme. By using
the optimization, the network controller needs to broadcast
only 16 (i.e., (15 + 1)) coefficients. The communication
bandwidth requirement is reduced by square root times the
original requirement.

4. Security Analysis

In this section, we analyze the security properties of the
proposed SHB, EHB and APB schemes. Following the at-
tack model specified earlier, our analysis will focus on two
types of attacks: (1) the attacker compromising a sensor
node attempts to decrypt data stored earlier in the node; (2)
the attacker attempts to decrypt data that it is not authorized
to access.

4.1. Security Analysis for the SHB and
EHB Schemes

When the SHB scheme is deployed, the attacker com-
promising a sensor node has negligibly low probability to
decrypt data stored earlier in the node. This is because, it
has negligibly low probability to derive any previously used
key (which has been erased) from the current key due to the
one-way property of secure hash functions employed. For
the same reason, with the EHB scheme, the attacker com-
promising a sensor node also has negligibly low probability
to decrypt data stored earlier in the node.

In SHB, any data retrieval and decryption must go
through the network controller, and therefore, the attacker
cannot decrypt data that it is not authorized to access. With
EHB scheme, although users are given some keying infor-
mation to enable them to derive keys for decrypting data
they are authorized to, they have negligibly low probabil-
ity to derive other keys based on the given keying infor-
mation due to the one-way property of secure hash func-
tions. For example, a user authorized to retrieve data gen-
erated during Phase i is given h(Km | i) and thus can
generate key hj(h(Km | i) | u) to decrypt the any data

www.manaraa.com

item generated by any node during this phase. However,
he cannot derive the keys used in any other Phase i′, i.e.,
hj(h(Km | i′) | u) since the probability for deriving
h(Km | i′) from h(Km | i) is negligibly low without know-
ing Km.

4.2. Security Analysis for the APB Scheme

For the APB scheme, we consider two categories of at-
tacks: attacks without collusions and attacks with collu-
sions.

4.2.1 Attacks without collusions

Without collusions, the attacker who compromises a sensor
node u may attempt to derive previously data encryption
keys to decrypt data stored earlier. Based on the timing of
the key to be derived, there are three cases:

(i) To derive a previous key in the current phase: Due
to the one-way property of secure hash functions, the
probability of successful derivation is negligibly low.

(ii) To derive a previous key that was generated based on a
seed polynomial that has been updated: Due to the ar-
bitrariness in picking see polynomials, there is no con-
nection between different seed polynomials. There-
fore, the probability of successful derivation is also
negligibly low.

(iii) To derive a previous key in some previous phase, and
the key to be derived and the current key are gener-
ated based on the same network-wide seed polynomial
f(x, y).

In this case, the attacker may launch brute-force attack
to guess the key, and the complexity is Ω(2Lk), where Lk is
the size of key. For Lk = 64 bits, the complexity will be as
high as 264. Another approach is to break the seed polyno-
mial of sensor node u, i.e., fu(y) based on the initial keys
of phases that still stored in node u, and thus can break the
keys in previous phases based on fu(y). However, accord-
ing to the following theorem, the complexity of this attack
is as high as Ω(2(r−1)∗(t+1)).

Theorem 2 Let fu(y) =
∑t

j=0 Bjy
j . The initial keys of n

phases (i = 0, · · · , n − 1) are Ku,i,0 (i = 0, · · · , n − 1),
each is the most significant l − r bits of fu(i). Suppose
the attacker has know all Ku,i,0 (i = 0, · · · , n − 1), the
complexity to find out fu(y) is Ω(2(r−1)∗(t+1)).

Proof. To find out fu(y), the attacker needs to find out its
(t+1) the coefficients B0, B1, · · · , Bt. Since the adversary
knows n keys, it can obtain the following system of linear
equations:

Ku,i,0 ∗ 2r =
t∑

j=0

Bj(i)j −Ri, i = 0, · · · , n− 1.

Here, Ri represents the least significant r bits of fu(i), and
thus Ku,i,0 ∗ 2r = fu(i) − Ri. Bj (0 ≤ j ≤ t) and Rk

(1 ≤ k ≤ n) are unknowns. Therefore the total num-
ber of unknowns are n + t + 1, while the total number
of linear equations is n. Since the number of linear equa-
tions are less than the number of unknowns, the unique
solution of Bi cannot be found. The only way to solve
fu(y) is to guess some variables Bj (0 ≤ j ≤ t) or Rk

(1 ≤ k ≤ n). Suppose the adversary guesses n1 coeffi-
cients Bj and n2 random number Rk. n1 and n2 must sat-
isfy n+ t+1− (n1 +n2) ≤ n. This is because the number
of remaining unknowns cannot exceed the number of equa-
tions. Therefore, we have n1 + n2 ≥ t + 1. Since Rk are of
(r− 1) bits, which are shorter than the coefficients Bj . The
adversary must choose to guess t + 1 of Rk’s. Each Rk is
picked from a set of 2(r−1) numbers. Since there is only a
unique solution, the expected time complexity to guess the
right answer is Ω(2(r−1)∗(t+1)).

4.2.2 Attacks with collusions

If the attacker has compromised multiple sensor nodes, the
information captured from all these nodes can be combined
to derive the previous keys used by one of the compromised
node u. Here, we consider the extreme scenario (most fa-
voring the attacker). That is, we assume the attacker has
captured fvi(y) from n sensor sensor nodes v0, · · · , vn−1.
Based on the information, the attacker attempts to break
f(u, y) and thus breaking any key used by sensor node u.
However, as shown in the following theorem, the complex-
ity of this attack is as high as Ω(2(r−2)∗(t+1)).

Theorem 3 Let f(x, y) be a network-wide seed polyno-
mial, and the degree of x and y be t. fvi(y) (v0, · · · , vn−1)
are n perturbed shares of f(x, y); i.e., fvi(y) = f(vi, y) +
αvi , where αvi ∈ {0, · · · , 2r−1 − 1}. Suppose the attacker
has know all fvi(y) (v0, · · · , vn−1), given an arbitrary pair
of u and t, the complexity to find out an arbitrary f(u, t) is
Ω(2(r−2)∗(t+1)).

Proof. Similar to the proof of Theorem 2.

Theorem 4 Let p̃u(y, z) be a node u’s perturbing poly-
nomial, and the degree of y and z be t. pu(y, v) (∀v ∈
{0, · · · , m− 1}) are m perturbed shares of p̃u(y, z); i.e.,
pu(y, v) = p̃u(y, v) − rv , where rv ∈ {0, · · · , 2r−2 −
1}. Suppose the attacker knows all pu(y, v) (∀v ∈
{0, · · · , m− 1}), the complexity to find out p̃u(y, z) is
Ω(2(r−3)∗(t+1)).

Proof. Similar to the proof of Theorem 2.

5. Performance Evaluation

Here in this section we report the results for implement-
ing the proposed adaptive polynomial-based (APB) scheme.

www.manaraa.com

We have implemented the schema on top of the TinyOS
platform, and simulated it in TOSSIM. We used the per-
formance evaluation script for mica2 motes to calculate the
storage, computation, and communication overhead.

In our implementation we deploy two types of nodes,
sensor nodes, and user nodes with embedded server func-
tionality. The system parameters l and r are set to be 64
bits and 16 bits, respectively. Hence, the size of each data
encryption key is 48 bits. The degree of x and y in poly-
nomials p(x, y) and f(x, y) is fixed at 15. The duration of
each phase is 1 hour, and the interval for disseminating seed
polynomials varies between 10 hours and 100 hours.

We measure the sensor mote’s CPU cycle time for one
polynomial share evaluation (including conversion of poly-
nomials to keys), one data message storage (including data
encryption and hashing of key), one query response (in-
cludes retrieval, and sending of encrypted data and hashed
key for the user mote query) and one seed polynomial re-
ceiving (includes receiving the seed polynomial from the
network controller, evaluating the corresponding shares for
this sensor node). At the user node, we measure the CPU
cycles for one query sending and response data decryption.

The experimental results are reported in the following.
As we can see, the overhead of the proposed APB scheme
is low and affordable for current generation of network,
in terms of storage, communication and computation over-
head.

5.1. Storage Overhead

Nodes ROM Size (bytes) RAM Size (bytes)
SENSOR 23438 (code) + 128 (data) 720 ∼ 1440
USER 25410 745

Table 1. Storage Overhead for Sensor and User Nodes

As shown in Table 1, the storage overhead experienced
in our implementation at the user node is 745 bytes of RAM
required to store the polynomials sent by the network con-
troller for the data retrieval, and at the sensor node is be-
tween 720 (when the interval for disseminating seed poly-
nomial is 10 hours) and 1440 (when the interval is 100
hours) bytes of RAM required for storing data encryption
keys. The program code consumes 25.4 KB and 23.4 KB at
the user and sensor nodes, respectively.

We also measure the storage requirement as the inter-
val for disseminating seed polynomials vary, and the result
is shown in Figure 3. In the figure, the y-axis stands for
the total storage overhead required to store sufficient keys
at the sensor node till it receives a new seed polynomial
from the network controller. The x-axis represents the share
update interval, which is varied between 10 hours and 100
hours. The figure shows that the storage overhead caused
by key storage is directly proportional to the interval of dis-
seminating seed polynomials. Smaller the update interval

time (seed polynomials are disseminated often, say every
10 hours), the storage required to store sufficient keys at the
sensor node remains low (720 bytes). As the time interval
increases (as we increase along the x-axis, seed polynomi-
als are sent every 100 hors), the sensor node needs to store
a large amount of keys incurring greater storage overhead
(1440 bytes).

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0 20 40 60 80 100

St
or

ag
e

R
eq

ui
re

m
en

t p
er

 N
od

e
(b

yt
es

)

Interval for Disseminating Seed Polynomials (hours)

Figure 3. Storage Overhead vs. Interval for Dissemina-
tion Seed Polynomials

5.2. Communication Overhead

We measure communication overhead as the interval for
disseminating seed polynomials vary,and the result is shown
in Figure 4. In this figure, the y-axis represents the av-
erage communication overhead per second at each sensor
node, for receiving seed polynomials from the network con-
troller. As the seed polynomials are broadcast, the sensor
network is flooded with the polynomials. So each sensor
node not only experiences communication overhead for re-
ceiving one set of coefficients, but also encounters overhead
for forwarding the coefficients along with receiving redun-
dant sets of coefficients. So we have randomly simulated
various topologies with randomly generated neighbors for
calculating the average communication overhead at each
sensor node. The overhead is measured in terms of CPU
cycle counts experienced per second.

The graph shows that the communication overhead
caused by disseminating and receiving seed polynomials
is inversely proportional to the interval of dissemination.
Smaller the update interval time (that is updates are sent of-
ten, say every 10 hours), the communication overhead expe-
rienced at the each sensor node rises greatly (approximately
208 CPU cycles/sec). As the time interval between the two
dissemination increases (as we increase along the x-axis,
the update is sent very rarely, say, every 100 hours), the
sensor node incurs less communication overhead (approxi-
mately 21 CPU cycles/sec).

www.manaraa.com

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 10 20 30 40 50 60 70 80 90 100C
om

m
. o

ve
rh

ea
d

pe
r

N
od

e
(C

PU
 c

ou
nt

/s
ec

)

Interval for Disseminating Seed Polynomials (hours)

Figure 4. Communication Overhead vs. Interval for Dis-
seminating Seed Polynomials

Functions CPU Cycle
Count

CPU Cycle
Time (ms)

Sensor: one poly. evaluation
and generation of initial keys

104,793.5 14.19

Sensor: one data encryption
and key hashing

47,935.0 6.493

User: initialization 15,464.0 2.0945
User: one query and data re-
trieval

105,732.5 14.32

Table 2. Computational Overhead in Sensor and User
Nodes

5.3. Computational Overhead

Each sensor node consumes 14.19 ms of CPU cycle time
for generation of initial keys for phases from the received
seed polynomials; 6.493 ms CPU cycle time is consumed
for securing the storage of each data item. The user node
initiation consumes 2.0945 ms CPU Cycle time, which in-
volves initial setup with Server Node. Each query consumes
14.32 ms CPU cycle time.

6. Conclusion

In this paper, we proposed three schemes for securing
distributed data storage and retrieval in sensor networks. All
the schemes have the following properties: (i) Only autho-
rized entities can access data stored in the sensor network;
(ii) The schemes are resilient to a large number of sensor
node compromises. The second and the third schemes do
not involve any centralized entity except for a few initial-
ization or renewal operations, and thus support secure, dis-
tributed data storage and retrieval. The third scheme fur-
ther provides high scalability and flexibility, and hence is
most suitable in real applications. The effectiveness and
efficiency of the proposed schemes have also been verified
through extensive analysis and TOSSIM-based simulations.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.Cayirci,
“Wireless Sensor Networks: A Survey,” Computer Net-
works, vol. 38, no. 4, March 2002.

[2] G. Wang, G. Cao, and T. La Porta, “A Bidding Protocol for
Deploying Mobile Sensors,” IEEE International Conference
on Network Protocols (ICNP), November 2003.

[3] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A Two-Tier
Data Dissemination Model for Large-scale Wireless Sen-
sor Networks,” ACM International Conference on Mobile
Computing and Networking (MOBICOM’02), pp. 148–159,
September 2002.

[4] G. Wang, G. Cao, T. La Porta, and W. Zhang, “Sensor relo-
cation in mobile sensor networks,” IEEE INFOCOM, March
2005.

[5] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar,
“Spins: security protocols for sensor netowrks,” in Pro-
ceedings of ACM Mobile Computing and Networking (Mo-
bicom’01), 2001, pp. 189–199.

[6] L. Eschenauer and V. Gligor, “A Key-management Scheme
for Distributed Sensor Networks,” The 9th ACM Confer-
ence on Computer and Communications Security, pp. 41–47,
November 2002.

[7] D. Liu and P. Ning, “Establishing Pairwise Keys in Dis-
tributed Sensor Networks,” The 10th ACM Conference on
Computer and Communications Security, 2003.

[8] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-route
Filtering of Injected False Data in Sensor Networks,” IEEE
Infocom’04, March 2004.

[9] H. Yang, F. Ye, Y. Yuan, S. Lu, and W. Arbaugh, “Toward
Resilient Security in Wireless Sensor Networks,” ACM MO-
BIHOC, May 2005.

[10] G. Wang, W. Zhang, G. Cao, and T. La Porta, “On Support-
ing Distributed Collaboration in Sensor networks,” IEEE
Military Communications Conference (MILCOM), October
2003.

[11] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan
an d S. Shenker, “GHT: A Geographic Hash Table for Data-
Centric Storage,” WSNA ’02, September 2002.

[12] W. Zhang, G. Cao, and T. La Porta, “Data Dissemination
with Ring-Based Index for Sensor Networks,” IEEE Inter-
national Conference on Network Protocol (ICNP), Novem-
ber 2003.

[13] J. Newsome and D. Song, “GEM:Graph EMbedding for
Routing and Data-Centric Storage in Sensor Networks With-
out Geographic Information,” In Proc. SenSys’03, Los An-
geles, California,USA, November 2003.

[14] B. Greenstein, S. Ratnasamy, S. Shenker, R. Govindan, and
D. Estrin, “DIFS: a distributed index for features in sensor
networks,” Ad Hoc Networks, vol. 1, no. 2-3, pp. 333–349,
2003.

[15] X. Li, Y. Kim, R. Govindan, W. Hong, “Multi-dimensional
range queries in sensor networks,” Proceedings of the 1st
International Conference on Embedded Networked Sensor
Systems (SenSys), pp. 63–75, 2003.

[16] A. Ghose, J. Grobklags and J. Chuang, “Resilient data-
centric storage in wireless ad-hoc sensor networks,” Pro-
ceedings the 4th International Conference on Mobile Data
Management (MDM’03), pp. 45–62, 2003.

[17] P. Desnoyers, D. Ganesan, and P. Shenoy, “TSAR: A
Two Tier Sensor Storage Architecture Using Interval Skip
Graphs,” In Proc. SenSys’05, San Diego, California, USA,
November 2-4 2005.

[18] Q. Fang, J. Gao, and L. Guibas, “Landmark-Based Informa-
tion Storage and Retrieval in Sensor Networks,” April 2006.

